Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Death Dis ; 14(2): 75, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2221800

ABSTRACT

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.


Subject(s)
Adipose Tissue, White , COVID-19 , Animals , Cricetinae , Adipose Tissue, White/pathology , COVID-19/pathology , Disease Models, Animal , Mesocricetus , SARS-CoV-2
2.
Viruses ; 14(9)2022 09 17.
Article in English | MEDLINE | ID: covidwho-2043978

ABSTRACT

Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II-a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.


Subject(s)
COVID-19 , Dyslipidemias , Non-alcoholic Fatty Liver Disease , Angiotensin II , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/complications , Cricetinae , Cytokines , Diet , Disease Models, Animal , Humans , Inflammation , Mesocricetus , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , SARS-CoV-2
3.
iScience ; 25(7): 104537, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1977400

ABSTRACT

The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.

4.
Gut Microbes ; 14(1): 2100200, 2022.
Article in English | MEDLINE | ID: covidwho-1927236

ABSTRACT

Obese patientss with nonalcoholic steatohepatitis (NASH) are particularly prone to developing severe forms of coronavirus disease 19 (COVID-19). The gut-to-lung axis is critical during viral infections of the respiratory tract, and a change in the gut microbiota's composition might have a critical role in disease severity. Here, we investigated the consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the gut microbiota in the context of obesity and NASH. To this end, we set up a nutritional model of obesity with dyslipidemia and NASH in the golden hamster, a relevant preclinical model of COVID-19. Relative to lean non-NASH controls, obese NASH hamsters develop severe inflammation of the lungs and liver. 16S rRNA gene profiling showed that depending on the diet, SARS-CoV-2 infection induced various changes in the gut microbiota's composition. Changes were more prominent and transient at day 4 post-infection in lean animals, alterations still persisted at day 10 in obese NASH animals. A targeted, quantitative metabolomic analysis revealed changes in the gut microbiota's metabolic output, some of which were diet-specific and regulated over time. Our results showed that specifically diet-associated taxa are correlated with disease parameters. Correlations between infection variables and diet-associated taxa highlighted a number of potentially protective or harmful bacteria in SARS-CoV-2-infected hamsters. In particular, some taxa in obese NASH hamsters (e.g. Blautia and Peptococcus) were associated with pro-inflammatory parameters in both the lungs and the liver. These taxon profiles and their association with specific disease markers suggest that microbial patterns might influence COVID-19 outcomes.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Cricetinae , Non-alcoholic Fatty Liver Disease/microbiology , Obesity/complications , Obesity/microbiology , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
5.
PLoS Pathog ; 18(5): e1010498, 2022 05.
Article in English | MEDLINE | ID: covidwho-1902646

ABSTRACT

Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Chlorobenzenes , Chlorocebus aethiops , Cresols , Humans , Lung , Mice , Vero Cells
6.
Antimicrob Agents Chemother ; 66(2): e0158121, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1799247

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the need for broad-spectrum antivirals against coronaviruses (CoVs). Here, pheophorbide a (Pba) was identified as a highly active antiviral molecule against human CoV-229E after bioguided fractionation of plant extracts. The antiviral activity of Pba was subsequently shown for SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), and its mechanism of action was further assessed, showing that Pba is an inhibitor of coronavirus entry by directly targeting the viral particle. Interestingly, the antiviral activity of Pba depends on light exposure, and Pba was shown to inhibit virus-cell fusion by stiffening the viral membrane, as demonstrated by cryoelectron microscopy. Moreover, Pba was shown to be broadly active against several other enveloped viruses and reduced SARS-CoV-2 and MERS-CoV replication in primary human bronchial epithelial cells. Pba is the first described natural antiviral against SARS-CoV-2 with direct photosensitive virucidal activity that holds potential for COVID-19 therapy or disinfection of SARS-CoV-2-contaminated surfaces.


Subject(s)
Biological Products , COVID-19 , Middle East Respiratory Syndrome Coronavirus , Antiviral Agents/pharmacology , Biological Products/pharmacology , Cryoelectron Microscopy , Humans , SARS-CoV-2
7.
Gut Microbes ; 14(1): 2018900, 2022.
Article in English | MEDLINE | ID: covidwho-1585291

ABSTRACT

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Subject(s)
COVID-19/microbiology , COVID-19/physiopathology , Disease Models, Animal , Gastrointestinal Microbiome , Mesocricetus , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , COVID-19/pathology , Cricetinae , Fatty Acids, Volatile/administration & dosage , Fatty Acids, Volatile/metabolism , Humans , Male , SARS-CoV-2/physiology , Severity of Illness Index , COVID-19 Drug Treatment
8.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Article in English | MEDLINE | ID: covidwho-1500484

ABSTRACT

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Coronavirus 3C Proteases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microvessels/metabolism , SARS-CoV-2/metabolism , Animals , Blood-Brain Barrier/pathology , Brain/pathology , Chlorocebus aethiops , Coronavirus 3C Proteases/genetics , Cricetinae , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microvessels/pathology , SARS-CoV-2/genetics , Vero Cells
10.
Gut Microbes ; 13(1): 1-19, 2021.
Article in English | MEDLINE | ID: covidwho-1123200

ABSTRACT

The current pandemic of coronavirus disease (COVID) 2019 constitutes a global public health issue. Regarding the emerging importance of the gut-lung axis in viral respiratory infections, analysis of the gut microbiota's composition and functional activity during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be instrumental in understanding and controling COVID 19. We used a nonhuman primate model (the macaque), that recapitulates mild COVID-19 symptoms, to analyze the effects of a SARS-CoV-2 infection on dynamic changes of the gut microbiota. 16S rRNA gene profiling and analysis of ß diversity indicated significant changes in the composition of the gut microbiota with a peak at 10-13 days post-infection (dpi). Analysis of bacterial abundance correlation networks confirmed disruption of the bacterial community at 10-13 dpi. Some alterations in microbiota persisted after the resolution of the infection until day 26. Some changes in the relative bacterial taxon abundance associated with infectious parameters. Interestingly, the relative abundance of Acinetobacter (Proteobacteria) and some genera of the Ruminococcaceae family (Firmicutes) was positively correlated with the presence of SARS-CoV-2 in the upper respiratory tract. Targeted quantitative metabolomics indicated a drop in short-chain fatty acids (SCFAs) and changes in several bile acids and tryptophan metabolites in infected animals. The relative abundance of several taxa known to be SCFA producers (mostly from the Ruminococcaceae family) was negatively correlated with systemic inflammatory markers while the opposite correlation was seen with several members of the genus Streptococcus. Collectively, SARS-CoV-2 infection in a nonhuman primate is associated with changes in the gut microbiota's composition and functional activity.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome , Macaca/microbiology , Macaca/virology , Animals , Bacteria/classification , Disease Models, Animal , Feces , Female , Metabolome , RNA, Ribosomal, 16S/genetics
11.
Mucosal Immunol ; 14(2): 296-304, 2021 03.
Article in English | MEDLINE | ID: covidwho-1049958

ABSTRACT

Bacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host's defense against viral respiratory infections. The gut microbiota's composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota's composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung-gut axis in coronavirus disease 2019.


Subject(s)
Gastrointestinal Microbiome , Lung/immunology , Animals , COVID-19/immunology , Diet , Dietary Fiber/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Humans , Immunity, Mucosal , Influenza, Human/immunology , Probiotics , Respiratory Syncytial Viruses , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL